Attributes
- Companion
- class
- Graph
-
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
HybridSearcher.type
Members list
Type members
Classlikes
Configuration for hybrid searcher.
Configuration for hybrid searcher.
Value parameters
- defaultStrategy
-
Default fusion strategy
- keywordIndexConfig
-
Keyword index configuration
- vectorStoreConfig
-
Vector store configuration
Attributes
- Companion
- object
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Value members
Concrete methods
Create a hybrid searcher from existing stores.
Create a hybrid searcher from existing stores.
Value parameters
- defaultStrategy
-
Default fusion strategy (default: RRF)
- keywordIndex
-
Keyword index for BM25 search
- vectorStore
-
Vector store for semantic search
Attributes
- Returns
-
Hybrid searcher
Create a hybrid searcher from configuration.
Create a hybrid searcher from configuration.
Value parameters
- config
-
Hybrid searcher configuration
Attributes
- Returns
-
Hybrid searcher or error
Create a hybrid searcher with in-memory stores.
Create a hybrid searcher with in-memory stores.
Attributes
- Returns
-
Hybrid searcher or error
Create a hybrid searcher with PostgreSQL backends using separate connection pools.
Create a hybrid searcher with PostgreSQL backends using separate connection pools.
Use this when you need independent pool management for vector and keyword stores. For most use cases, prefer pgvectorShared which shares a single pool.
Value parameters
- defaultStrategy
-
Default fusion strategy
- keywordConfig
-
Configuration for PgKeywordIndex
- vectorConfig
-
Configuration for PgVectorStore
Attributes
- Returns
-
Hybrid searcher or error
Create a hybrid searcher with PostgreSQL backends for both vector and keyword search.
Create a hybrid searcher with PostgreSQL backends for both vector and keyword search.
This enables fully PostgreSQL-based hybrid RAG using:
- pgvector extension for vector similarity search
- PostgreSQL native full-text search (tsvector/tsquery) for keyword search
Both stores share a connection pool for efficiency.
Requires PostgreSQL 16+ with pgvector extension installed. Recommended: PostgreSQL 18+ for best performance.
Value parameters
- connectionString
-
JDBC connection string (e.g., "jdbc:postgresql://localhost:5432/mydb")
- defaultStrategy
-
Default fusion strategy (default: RRF with k=60)
- keywordTableName
-
Base table name for keywords (creates {tableName}_keyword table, default: "documents")
- password
-
Database password
- user
-
Database user
- vectorTableName
-
Table name for vectors (default: "vectors")
Attributes
- Returns
-
Hybrid searcher or error
Create a hybrid searcher with SQLite file-based stores.
Create a hybrid searcher with SQLite file-based stores.
Value parameters
- keywordDbPath
-
Path to keyword index database
- vectorDbPath
-
Path to vector store database
Attributes
- Returns
-
Hybrid searcher or error