RAGGuardrails
Preset configurations for RAG guardrails.
RAGGuardrails provides convenient preset combinations of guardrails for common RAG (Retrieval-Augmented Generation) use cases. Each preset balances security, quality, and latency differently.
Preset Levels:
minimal: Basic safety only (PII, input length)standard: Balanced protection for production usestrict: Maximum safety with comprehensive validationmonitoring: Full validation in warn mode (no blocking)
Example usage:
// Get standard guardrails for production
val (inputGuardrails, outputGuardrails, ragGuardrails) =
RAGGuardrails.standard(llmClient)
// Use in agent
agent.run(
query = userQuery,
tools = tools,
inputGuardrails = inputGuardrails,
outputGuardrails = outputGuardrails
)
// Use RAG guardrails separately
ragGuardrails.foreach { guardrail =>
guardrail.validateWithContext(response, ragContext)
}
Attributes
- Graph
-
- Supertypes
-
class Objecttrait Matchableclass Any
- Self type
-
RAGGuardrails.type
Members list
Type members
Classlikes
Result type for guardrail configurations.
Result type for guardrail configurations.
Value parameters
- inputGuardrails
-
Guardrails applied to user input
- outputGuardrails
-
Guardrails applied to LLM output
- ragGuardrails
-
RAG-specific guardrails with context awareness
Attributes
- Supertypes
-
trait Serializabletrait Producttrait Equalsclass Objecttrait Matchableclass AnyShow all
Value members
Concrete methods
Get all guardrails as a flat sequence (for compatibility).
Get all guardrails as a flat sequence (for compatibility).
Value parameters
- config
-
The guardrail configuration
Attributes
- Returns
-
All guardrails as a sequence
Create a custom configuration by combining existing presets.
Create a custom configuration by combining existing presets.
Value parameters
- inputGuardrails
-
Input guardrails to use
- outputGuardrails
-
Output guardrails to use
- ragGuardrails
-
RAG guardrails to use
Attributes
Configuration for customer support applications.
Configuration for customer support applications.
Optimized for:
- Keeping conversations on-topic
- Ensuring accurate responses
- Protecting customer PII
Value parameters
- llmClient
-
LLM client for LLM-as-judge guardrails
- productTopics
-
Topics related to your product/service
Attributes
Configuration for financial applications.
Configuration for financial applications.
Optimized for:
- Strict PII/financial data protection
- High accuracy requirements
- Regulatory compliance
Value parameters
- allowedTopics
-
Financial topics allowed
- llmClient
-
LLM client for LLM-as-judge guardrails
Attributes
Minimal safety configuration.
Minimal safety configuration.
Includes only essential protections with low latency impact:
- PII detection (no LLM calls)
- Prompt injection detection (no LLM calls)
Best for: Low-latency applications, internal tools, testing
Attributes
Monitoring configuration.
Monitoring configuration.
Full validation in warn mode (never blocks):
- All checks enabled
- Warnings logged but processing continues
- Useful for measuring quality without impacting users
Best for: Development, quality measurement, gradual rollout
Value parameters
- llmClient
-
LLM client for LLM-as-judge guardrails
Attributes
Configuration for research assistants.
Configuration for research assistants.
Optimized for:
- High accuracy and grounding
- Proper source attribution
- Lenient topic boundaries (research is broad)
Value parameters
- llmClient
-
LLM client for LLM-as-judge guardrails
Attributes
Configuration for software documentation assistants.
Configuration for software documentation assistants.
Optimized for:
- Technical accuracy
- Source attribution for code examples
- Staying within programming topics
Value parameters
- llmClient
-
LLM client for LLM-as-judge guardrails
Attributes
Standard protection configuration.
Standard protection configuration.
Balanced set of guardrails for production use:
- Input: PII detection, prompt injection, topic boundary
- Output: PII masking, grounding validation
- RAG: Context relevance, source attribution
Note: LLM-based guardrails require the llmClient parameter.
Best for: Production RAG applications
Value parameters
- llmClient
-
LLM client for LLM-as-judge guardrails
Attributes
Standard protection with topic restrictions.
Standard protection with topic restrictions.
Same as standard but adds topic boundary validation.
Value parameters
- allowedTopics
-
Topics that queries should relate to
- llmClient
-
LLM client for LLM-as-judge guardrails
Attributes
Strict protection configuration.
Strict protection configuration.
Maximum safety with comprehensive validation:
- Input: Strict PII detection, high-sensitivity injection detection, topic boundary
- Output: PII masking, strict grounding
- RAG: Strict context relevance, source attribution required
Note: Higher latency due to multiple LLM calls.
Best for: High-stakes applications, regulated industries
Value parameters
- allowedTopics
-
Topics that queries should relate to
- llmClient
-
LLM client for LLM-as-judge guardrails