
GSOC 2025
LIGHTNING TALK
presented by Shubham Vishwakarma

Google Summer of Code

Who Am I?

Hi, I’m Shubham Vishwakarma from Mumbai, India

Final-year CSE student at SPIT with a Management

minor at SPJIMR

Currently an Open Source Contributor with Scala

Center (GSoC 2025)

My journey with Scala began not in a classroom, but

through Daniel Ciocîrlan’s Rock the JVM courses, which

made me fall in love with the language.

That curiosity led me to the Scala community

Welcoming, supportive, and always pushing me to grow.

Shubham Vishwakarma
India 🇮🇳

Discovering GSoC & Scala Center

I came across GSoC with Scala Center and found the

LLM4S project ; the perfect blend of Scala and AI.

Reaching out and connecting with my mentors

Kannupriya Kalra and Rory Graves made the journey

real & their guidance shaped my direction.

The challenge was clear: LLM apps are hard to debug,

observe, and scale reliably.

Our mission set: make Scala a first-class citizen in AI

tooling, rooted in type-safety and functional

programming principles.

Rory Graves

Kannupriya Kalra

Tracing Support (PR #77, #119) :

 Added execution flow tracking, spans, and timing.

 Integrated Langfuse for developer-friendly traces.

Type-Safe Tracing (PR #165) :

 Rebuilt with sealed traits & composable backends.

 Ensured reliability and backward compatibility.

Demo & Multi-Backend (PR #184) :

 Built a calculator agent for sequential tool-use.

 Showcased tracing with Console, Lang fuse, and NoOp.

From First Trace to Full Demo: My Contributions

 Why It Matters : The Impact

Visibility Unlocked : Developers can now trace every LLM call

Type-Safe Reliability : Sealed traits & composable backends remove fragile logging

Real-World Proof : Demo agent + multi-backend tracing shows it works in practice .

Future-Ready : Establishes the base for memory, multi-agent orchestration, and

Scala-first AI systems.

Image : Print Trace Example

Image : LLM4S Tracing Architecture

Image : Langfuse Tracing Example

Beyond Tracing: The Next Chapter for LLM4S
Memory & State :

 Hybrid memory: short-term, episodic, semantic.

 Forgetting via decay, summarization, compression.

 Backed by Redis / RocksDB / vector DB.

Multi-Agent Systems :

 DAG-based planner with retries & fallbacks.

 Pub-sub signals for safe agent coordination.

 Scala-native, type-safe orchestration.

Typed Prompt DSL :

 Scala DSL for chaining LLMs, retrievers, tools.

 Cats-effect & typed streams for composability.

 Compile-time safety, no “stringly-typed” prompts.

Input : Zoom / Google Meet transcript (raw text).

Output:

 → Concise summary of discussion

 → Action items with owners & deadlines

 → Sentiment analysis of conversation flow

Why LLM4S?

 → Streaming summaries (real-time insights as the meeting runs)

 → Guardrails via JSON schema → {summary: String, actions: [Action]}

 → Full traceability → every step tracked with spans/events

A Real Use Case : Meeting Minutes Generator

THANK YOU
From learner to contributor → grateful for

this journey with Scala.

Heartfelt thanks to my mentors

Kannupriya Kalra, Rory Graves & Dmitry

Mamonov, and the Scala Center.

 💙 To the Scala community for being

supportive, curious, and inspiring.

Connect with me :)

